

Welcome to the documentation of hass-apps!

This is a collection of useful apps to empower Home Assistant even more.

The apps are built on top of the AppDaemon framework. Each has its own,
detailled documentation and includes a sample configuration. Read the
Getting Started chapter and start empowering your smart home.

Active and stable apps:

	Schedy - The most powerful scheduler for everything
from lighting to heating

Deprecated apps that will be removed:

	None at the moment.

Request for donations disabled due to maintenance mode

Note

I work on this project in my spare time, as many free software
developers do. And of course, I enjoy this work a lot. There is no
and will never be a need to pay anything for using this software.

However, if you want to honor the hundreds of hours continuously spent
with writing code and documentation, testing and providing support by
donating me a cup of coffee, a beer in the evening, my monthly hosting
fees or anything else embellishing my day a little more, that would be
awesome. If you decide doing so, I want to thank you very much! Please
be assured that I’m not presuming anybody to donate, it’s entirely
your choice.

[image: paypal-recurring] [https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=PZPNNAJ93TVTQ&source=url] Ensure ongoing development and support with a monthly
donation, no matter how small.

[image: paypal-once] [https://www.paypal.me/RSchindler] Or make an one-time donation.

ETH: 0xCE6B204B6AB5B93156f4FCD373482e148753beAb

ZEC: t1RKFyt4qqtqdYfprf8HZoDHRNLNzhe35ED

Getting Help

Note

If you run into any issue, first consult the documentation
thoroughly.

A notable amount of work has gone into it and most aspects should be
covered already. When this didn’t help you’re welcome to e.g. ask in
the Home Assistant Community [https://community.home-assistant.io/].

When encountering something that seems to be a bug, please open an
issue on GitHub [https://github.com/efficiosoft/hass-apps/issues] and
attach complete logs with debug: true set in the app’s configuration
illustrating the issue. You won’t receive help otherwise.

Contributing

You are welcome to contribute your own apps for AppDaemon to this
project. But please don’t submit a pull request without talking to
me first. This is because there is currently no developer documentation
on how to integrate properly with the environment provided by hass-apps
and I want to save you the hassle of re-designing your app after it’s
already written.

If you’ve got an interesting idea for a new app you’d like to contribute,
just open an issue on GitHub and we can discuss it there.

All contributions are subject to the Contributor Covenant Code of Conduct. Don’t
contribute if you don’t agree with that.

Getting Started

Installation in Hass.io

In order to use hass-apps in the hass.io ecosystem, you first need
to set up an AppDaemon add-on. The recommended add-on is this one [https://github.com/hassio-addons/addon-appdaemon4].

When you have that up and running, head over to
Installation in Docker and choose a hass-apps version to
install, BUT instead of storing the chosen string in a ``requirements.txt`` file,
you add it to the ``python_packages`` setting of the AppDaemon add-on using hass.io’s
web interface. It should look like this:

"python_packages": [
 "hass-apps"
]

Installation in Docker

Note

AppDaemon version 3.0.2 [https://appdaemon.readthedocs.io/en/3.0.2/HISTORY.html] or later
is required for this to work.

	When you have the official AppDaemon container up and running, create
a file named requirements.txt in your apps directory (or one
of its sub-directories) with one of the following contents.

	To always have the latest stable version of hass-apps installed
when AppDaemon starts:

hass-apps

	To install a specific version of hass-apps (e.g. v0.20181005.0):

hass-apps==0.20181005.0

	To always have the latest development version installed (don’t do
this unless you know what you’re doing):

https://github.com/efficiosoft/hass-apps/archive/master.zip

	Continue with the Configuration as normal.

Manual Installation

Hass-apps is a collection of apps for AppDaemon [https://appdaemon.readthedocs.io/en/stable/], hence AppDaemon is a
dependency of hass-apps and will automatically be installed alongside.

The project itself is developed on GNU/Linux, but since there are no
platform-specific Python modules used it should run everywhere Python
and AppDaemon are available. However, we’ll assume an installation on
GNU/Linux for the rest of this guide. Feel free to apply it to your own
operating system.

The minimum required Python version is 3.5. To find out what you have
installed, run python3 --version. If your version of Python is recent
enough, you may continue with installing.

It is strongly recommended to install hass-apps (+ it’s dependencies
like AppDaemon) into a virtualenv, separated even from Home Assistant in
order to avoid conflicts with different versions of dependency packages.

Other huge benefits of the virtualenv installation are that you neither
need root privileges nor do you pollute your system.with numerous tiny
packages that are complicated to remove, should you sometime wish to
do so.

The following simple steps will guide you through the installation
process.

	If you use a distribution like Debian or Ubuntu which doesn’t ship
venv with Python by default, install it first. Whithout installing
python3-venv, you’d end up with a crippled virtualenv with pip,
the Python package manager, not available. Of course you do need root
privileges for this particular step.

sudo apt install python3-venv

	Then, create the virtualenv. We do this in a directory named
appdaemon in this example inside the user’s home directory.

 mkdir ~/appdaemon
python3 -m venv ~/appdaemon/venv

	Activate the virtualenv.

cd ~/appdaemon
source venv/bin/activate

	Now install some common packages.

pip install --upgrade pip setuptools wheel

	And finally, install hass-apps.

	Install the latest stable version from PyPi (preferred).

pip install --upgrade hass-apps

	Or, as an alternative, install the state from the Git repository to get even
the latest changes. But please keep in mind that this shouldn’t be considered
stable and isn’t guaranteed to work all the time. Don’t use the development
version in production unless you have a good reason to do so.

pip install --upgrade https://github.com/efficiosoft/hass-apps/archive/master.zip

Configuration

When you followed the above steps for installing hass-apps,
you automatically installed AppDaemon as well. Configuring
AppDaemon is out of the scope of this tutorial, but there
is a Configuration Section in the AppDaemon Documentation [https://appdaemon.readthedocs.io/en/stable/CONFIGURE.html]
which describes what to do. We assume that you’ve got a working AppDaemon
4.x for now.

	Get yourself a nice cup of coffee or tea. You’ll surely need it.

	Store the file hass_apps_loader.py [https://raw.githubusercontent.com/efficiosoft/hass-apps/master/hass_apps_loader.py]
in your AppDaemon’s apps directory. This is just a stub which
imports the real app’s code.

	Pick one or more apps you want to use.

	Copy the sample configuration provided for each app in the docs to a
new YAML file in your AppDaemon’s apps directory and start editing
it. Adapt the sample configuration as necessary. Documentary comments
explaining what the different settings mean are included.
The sample configurations can also be found in the GitHub repository
under docs/apps/<app_name>/sample-apps.yaml.

	AppDaemon should have noticed the changes made to the apps directory and
start the new app(s) automatically.

You’re done, enjoy hass-apps!

Upgrading

As with every software, hass-apps and its dependencies need to be upgraded
regularly in order to get the latest fixes, security updates, feature
additions and enhancements that are incorporated every now and then.

Upgrade in Hass.io or Docker

When you followed the tutorial for
Installation in Hass.io
or Installation in Docker and decided for
automatic upgrading, you don’t need to do anything. Just ensure that
your configuration stays compatible with the new hass-apps versions
and restart the AppDaemon container (or the add-on in case of hass.io)
from time to time.

If you explicitly decided for a specific version of hass-apps, change
the version number in the requirements.txt file you once created
(or the add-on settings) to the latest one and restart AppDaemon.

Upgrade Manually

When you’ve installed hass-apps using the Manual Installation
method, simply repeat the procedure from step 3 onwards in order to upgrade.

Note

AppDaemon doesn’t detect changes in the imported modules automatically and needs
to be restarted manually for the upgrade to take effect.

Schedy

Schedy is a highly-configurable, comfortable to use multi-purpose
scheduler for Home Assistant that controls different types of actors
such as switches and thermostats based on powerful rules while still
facilitating manual intervention at any time.

The goal is to provide an easy solution for conventional scheduling
(e.g. by time of day and day of week) while leaving advanced users plenty
of room for customization with arbitrarily complex rules.

Note

Excited? A Tutorial is provided for getting up and running quickly.

These key features are implemented in Schedy. More are added continuously.

	Schedules (based on time, days of week/month, month, year and more)

	Multiple schedules for different purposes, occasions or seasons

	One schedule can control a group of actors at once

	Unlimited number of actor groups (Schedy calls them rooms), each having
its own schedule

	Configurable re-scheduling after manual adjustments

	Optional synchronization of manual changes among all actors in a room

	Dynamic values based on expressions written in Python, allowing for
arbitrarily complex rules that can consider any information available
to Home Assistant

	Event-driven system enables external control by ordinary Home Assistant
events

	Re-sending until actors report a change back (for unreliable networks)

	Collection of individually configurable statistical parameters regarding
Schedy’s operation

	Configurable logging

The scenarios for which you might need a scheduler are numerous. Here
are just some ideas:

	advanced heating setup based on day, time, presence etc.

	motion, daylight and time-triggered lights

	controlling roller shutters based on time, sun and wind conditions

	… and much more

This documentation is written for both beginners that want to get
started with Schedy and advanced users needing a reference book for
implementing complex scenarios.

In order to get started, it is recommended to read the chapter about
the concept first and then proceed to the Tutorial.

Contents:

	The Concept

	Tutorial

	Configuration

	Actors

	Schedules

	Events

	Statistics

	Tips & Tricks

	Changelog

The Concept

Schedy is a multi-purpose scheduler for Home Assistant.

When one thinks of a schedule, he usually imagines to configure values (such as
temperatures) for different times of the day and days of week. That’s of course
possible with Schedy in a convenient manner, but it can do a lot more as well.

Scheduling here basically means linking time frames (and/or state conditions) to
the states actors should adopt.

Why not use Automations?

You may now ask: Why should I use a third-party solution when I have automations
in Home Assistant right at hand? Well, that’s a legitimate question. But have
you ever tried to implement a flexible, easily maintainable schedule for heating,
roller shutters or lights using plain automations? Maybe even one that cooperates
with presence or motion detection? If not, believe me, that’s no fun and will get
really confusing sooner than later.

Besides this practical reasons why automations are not suited well for scheduling,
take a look at what automations really do: reacting to triggers. Triggers can be
described as events - they happen once, cause the automation to fire and are then
gone. Possible triggers could be “I get home” or “Someone turns on the TV”. But if
you, for instance, start Home Assistant after the TV was already turned on, your
automation won’t fire at all.

In contrast to automations, Schedy maps time (and optionally state) to state. Instead
of waiting for the events “It’s 8.00pm” and “”Someone turns on the TV”, Schedy checks
“Is it after 8.00pm?” and “”Is the TV turned on?” and, if so, ensures the corresponding
scheduled state, such as “Living room lights off” is in place.

Note

Automations react to triggers (events/state changes), Schedy reacts to time
and/or state..

Don’t get me wrong, automations are great and Schedy doesn’t try to obsolete them,
but they simply aren’t suited well for scheduling.

How it Works

While reading this documentation and working with Schedy, you’ll stumble
across different terms that you have to understand first.

An actor is an entity that can be controlled by Home Assistant. A
switch is an actor that can have the states on and off, for
instance. A thermostat is one that can be set to different temperature
values or be turned off completely. There are far more possibilities
for what can be used as an actor in Schedy, but that’s enough for now.

The purpose of a schedule, which usually consists of multiple
schedule rules, is to define what state actors should be in at which
times. Apart from the rich set of available constraints for specifying
a schedule rule’s period of validity, Schedy’s schedules do also support
expressions that can easily be written in-line in Python to let the
state of arbitrary entities in Home Assistant influence the scheduled
value, allowing for decisions based on, for instance, presence or motion.

Finally, Schedy operates on so-called rooms. A room is an unit with
a schedule and one or more actors that are controlled simultaneously by
that schedule.

That’s basically it. Plug all these components together and you get a
really powerful scheduler that can satisfy both basic and advanced needs.
The next chapter is a tutorial for getting Schedy up and running quickly.

Tutorial

In this tutorial, you’ll learn how to set up a basic heating schedule with some cool
features using Schedy.

Note

You are highly recommended to read the chapter about Schedy’s conception before proceeding.

This tutorial’s purpose is to get up and running quickly, which is why explanations
aren’t very detailed here, but the individual sections tell you where to read more
about particular features.

Contents

	Tutorial

	Objective

	Configuration Skeleton

	Reading the Log

	Configuring Some Heating Times

	Grouping Similar Rules Into Sub-Schedules

	Consolidating the Kids Rooms’ Schedules

	Adding Window Sensors

	Automatic Re-Scheduling After Manual Adjustments

	Stopping the Kids From Playing With the Thermostats

	Switching Schedules as Needed

	Using expression_environment to Make Rules More Concise

	Final Configuration

	Ok, And Now?

Objective

The goal is to have Schedy control thermostats in a flat with four rooms, a living
room, a bedroom and two kids rooms. In the living room, there are two
radiators, hence we’ve got two thermostats there.

In each room, there’s a window with window sensor attached. We want the heatings
in the particular room to be turned off when a window is opened and the previous
setting be restored when it’s closed again.

Furthermore, we make some enhancements to our schedules, allowing for dynamic schedule
switching and more. Stay tuned!

Configuration Skeleton

Our first step is to create a basic configuration which defines our rooms and actors
and save it as schedy_heating.yaml in AppDaemon’s apps directory:

schedy_heating: # This is our app instance name.
 module: hass_apps_loader
 class: SchedyApp

 actor_type: thermostat

 rooms:

 living:
 actors:
 climate.living_1:
 climate.living_2:
 schedule:

 bed:
 actors:
 climate.bed_1:
 schedule:

 kids1:
 actors:
 climate.kids1_1:
 schedule:

 kids2:
 actors:
 climate.kids2_1:
 schedule:

During the following steps, only configuration changes and additions are shown. A
full sample configuration like it looks after all steps have been applied can be
found at the end of this tutorial.

You may also want to consult the full reference of all
available settings.

Reading the Log

Schedy uses AppDaemon’s regular logging functionality to inform you about what’s
going on. How to access these logs depends on the way you set up AppDaemon, but by
default they’re just printed to stdout. Consult AppDaemon’s documentation for details.

You’ll need to watch the log often as you proceed with this tutorial, so make sure
you know how to do it.

Configuring Some Heating Times

Obviously, schedules are the most powerful part of Schedy. Unfortunately, that means
they can get a little complex when advanced features are used heavily. This tutorial
just configures simple heating times, but you may need to have a comprehensive look
at the chapter about schedules at some point.

We want to keep it simple for now. During nights or when no other temperature has
been configured, the heating should be turned off in all rooms.

As schedules are evaluated rule by rule from top to bottom until a matching rule was
found, we create a new rule as fallback at the end of each room’s schedule. But wait,
that would be redundant! Fortunately, there is the schedule_append section we
can use to append something to the schedules of all rooms at once. This goes into
our config:

schedule_append:
- v: "OFF"

Now, each room gets its own heating times.

	Living room:

schedule:
We set different heating times for weekdays and weekends.
- { v: 20, start: "06:00", end: "07:30", weekdays: 1-5 }
- { v: 20, start: "15:00", end: "22:30", weekdays: 1-5 }
- { v: 20, start: "08:00", end: "23:30", weekdays: 6-7 }

	Bedroom:

schedule:
The bedroom should always have 14 degrees to sleep well in there.
- v: 14

	Kids rooms:

We use the exact same schedule for both kids1 and kids2.
schedule:
- { v: 20, start: "06:00", end: "07:30", weekdays: 1-5 }
- { v: 20, start: "15:00", end: "19:00", weekdays: 1-5 }
- { v: 20, start: "07:30", end: "20:00", weekdays: 6-7 }

Now save the configuration and watch your new schedules in action. You can play
with the times of some rules and change them back and forth to verify Schedy applies
everything correctly.

Grouping Similar Rules Into Sub-Schedules

The schedules we created so far work fine, but they are quite verbose and
contain some redundancy. Let’s utilize a cool feature of Schedy to get rid
of that redundancy and make our rules more concise: sub-schedules.

The only rooms this really makes sense for are the living room and the kids rooms,
as they contain multiple rules with common properties (like v and weekdays).

	Living room:

schedule:
- v: 20
 rules:
 - weekdays: 1-5
 rules:
 - { start: "06:00", end: "07:30" }
 - { start: "15:00", end: "22:30" }
 - weekdays: 6-7
 rules:
 - { start: "08:00", end: "23:30" }

	Kids rooms:

schedule:
- v: 20
 rules:
 - weekdays: 1-5
 rules:
 - { start: "06:00", end: "07:30" }
 - { start: "15:00", end: "19:00" }
 - weekdays: 6-7
 rules:
 - { start: "07:30", end: "20:00" }

You see that the schedules didn’t get shorter, but we now have a clear
hirarchy of rules and don’t need to repeat v and weekdays over and over
anymore. Structuring your schedules this way is by no means required, but it does
increase readability and maintainability as your schedules get more complex. Some
sophisticated features can take even more advantage of sub-schedules, as you’ll
see later.

Consolidating the Kids Rooms’ Schedules

The schedules for both kids rooms are identical. It would be nice to
have the schedule only once. We use the schedule snippets feature and create a schedule
snippet named "kids":

schedule_snippets:
 kids:
 - v: 20
 rules:
 - weekdays: 1-5
 rules:
 - { start: "06:00", end: "07:30" }
 - { start: "15:00", end: "19:00" }
 - weekdays: 6-7
 rules:
 - { start: "07:30", end: "20:00" }

Now, we include that snippet in the schedules of the kids rooms:

schedule:
- x: "IncludeSchedule(schedule_snippets['kids'])"

Done!

Adding Window Sensors

We’re just following the official guide for open window detection here.

The rule which turns the heatings off when a window is open is placed in the
schedule_prepend section:

schedule_prepend:
- x: "Mark(OFF, Mark.OVERLAY) if not is_empty(filter_entities('binary_sensor', state='on', window_room=room_name)) else Next()"

Why that rule works as it does is explained in more detail in the guide linked above.

We now map our sensors to the rooms they belong to with help of customize.yaml:

binary_sensor.living_window_1:
 window_room: living
binary_sensor.bed_window_1:
 window_room: bed
binary_sensor.kids1_window_1:
 window_room: kids1
binary_sensor.kids2_window_1:
 window_room: kids2

Adding more than one sensor per room would be very simple, as you can see.

Finally, we tell Schedy to re-evaluate the room’s schedule when a sensor changes its
state. For that, we just add them to the watched_entities lists of the particular
rooms. Here is an example for living, the others are analogous:

watched_entities:
- binary_sensor.living_window_1

Automatic Re-Scheduling After Manual Adjustments

It would be cool to be able to change the temperature in a room unplanned and have
Schedy apply the regular schedule again after some period of time. For this purpose,
there is the rescheduling_delay setting that can be set per room.

Let’s enable it in living room and bedroom and set it to two hours (120 minutes):

living:
 rescheduling_delay: 120
 # ...

bed:
 rescheduling_delay: 120
 # ...

Stopping the Kids From Playing With the Thermostats

Our kids are still young and hit every button they can reach. Why not fix the
temperature in the kids rooms to what is dictated by the schedule? We disable
allow_manual_changes and Schedy will revert any manual change as soon as it’s
performed:

kids1:
 allow_manual_changes: false
 # ...

kids2:
 allow_manual_changes: false
 # ...

Switching Schedules as Needed

Wouldnt it be nice to be able to switch the schedules when, for instance, we have
holidays and are home over the day? Nothing simpler than that with Schedy.

We add an input_select in Home Assistant:

input_select:
 heating_mode:
 name: Heating Mode
 options:
 - Normal
 - Parents Home
 - All Home

Then, we adapt the schedules accordingly. The pattern we follow is this one, should you need
help understanding what’s going on here.

	Living room:

schedule:
- v: 20
 rules:
 - weekdays: 1-5
 rules:
 - rules:
 - x: "Next() if state('input_select.heating_mode') == 'Normal' else Break()"
 - { start: "06:00", end: "07:30" }
 - { start: "15:00", end: "22:30" }
 - rules:
 - x: "Next() if state('input_select.heating_mode') != 'Normal' else Break()"
 - { start: "08:00", end: "23:30" }
 - weekdays: 6-7
 rules:
 - { start: "08:00", end: "23:30" }

	Kids rooms:

schedule_snippets:
 kids:
 - v: 20
 rules:
 - weekdays: 1-5
 rules:
 - rules:
 - x: "Next() if state('input_select.heating_mode') != 'All Home' else Break()"
 - { start: "06:00", end: "07:30" }
 - { start: "15:00", end: "19:00" }
 - rules:
 - x: "Next() if state('input_select.heating_mode') == 'All Home' else Break()"
 - { start: "07:30", end: "20:00" }
 - weekdays: 6-7
 rules:
 - { start: "07:30", end: "20:00" }

Don’t forget to add input_select.heating_mode to the list of entities watched
for state changes. Instead of adding it to all three concerned rooms, we simply add
it to the global list and have it count for all rooms:

watched_entities:
- input_select.heating_mode

Using expression_environment to Make Rules More Concise

We’ve got four schedule rules with expressions that all use
state('input_select.heating_mode') to query the heating mode currently selected
from Home Assistant. This is quite repetitive and makes the rules long and unwieldy.

There is the expression_environment setting, which allows us to built custom Python
objects we can then use in all our rule expressions. We utilize this functionality
and create a new function, heating_mode():

expression_environment: |
 def heating_mode():
 return state("input_select.heating_mode")

The individual rules then change to something like:

- x: "Next() if heating_mode() == 'All Home' else Break()"

The remaining ones are left to do for you.

Final Configuration

Here is the final outcome of our work as a full Schedy configuration.

schedy_heating: # This is our app instance name.
 module: hass_apps_loader
 class: SchedyApp

 actor_type: thermostat

 expression_environment: |
 def heating_mode():
 return state("input_select.heating_mode")

 schedule_snippets:
 kids:
 - v: 20
 rules:
 - weekdays: 1-5
 rules:
 - rules:
 - x: "Next() if heating_mode() != 'All Home' else Break()"
 - { start: "06:00", end: "07:30" }
 - { start: "15:00", end: "19:00" }
 - rules:
 - x: "Next() if heating_mode() == 'All Home' else Break()"
 - { start: "07:30", end: "20:00" }
 - weekdays: 6-7
 rules:
 - { start: "07:30", end: "20:00" }

 watched_entities:
 - input_select.heating_mode

 schedule_prepend:
 - x: "Mark(OFF, Mark.OVERLAY) if not is_empty(filter_entities('binary_sensor', state='on', window_room=room_name)) else Next()"

 schedule_append:
 - v: "OFF"

 rooms:

 living:
 rescheduling_delay: 120
 actors:
 climate.living_1:
 climate.living_2:
 watched_entities:
 - binary_sensor.living_window_1
 schedule:
 - v: 20
 rules:
 - weekdays: 1-5
 rules:
 - rules:
 - x: "Next() if heating_mode() == 'Normal' else Break()"
 - { start: "06:00", end: "07:30" }
 - { start: "15:00", end: "22:30" }
 - rules:
 - x: "Next() if heating_mode() != 'Normal' else Break()"
 - { start: "08:00", end: "23:30" }
 - weekdays: 6-7
 rules:
 - { start: "08:00", end: "23:30" }

 bed:
 rescheduling_delay: 120
 actors:
 climate.bed_1:
 watched_entities:
 - binary_sensor.bed_window_1
 schedule:

 kids1:
 allow_manual_changes: false
 actors:
 climate.kids1_1:
 watched_entities:
 - binary_sensor.kids1_window_1
 schedule:
 - x: "IncludeSchedule(schedule_snippets['kids'])"

 kids2:
 allow_manual_changes: false
 actors:
 climate.kids2_1:
 watched_entities:
 - binary_sensor.kids2_window_1
 schedule:
 - x: "IncludeSchedule(schedule_snippets['kids'])"

And the Home Assistant part:

customize:
 binary_sensor.living_window_1:
 window_room: living
 binary_sensor.bed_window_1:
 window_room: bed
 binary_sensor.kids1_window_1:
 window_room: kids1
 binary_sensor.kids2_window_1:
 window_room: kids2

input_select:
 heating_mode:
 name: Heating Mode
 options:
 - Normal
 - Parents Home
 - All Home

Ok, And Now?

Enjoy your new, powerful schedules! Consult the following chapters for more detailed
information on creating advanced rules, supported
actor types, events and statistics collection. The Tips & Tricks chapter may give you some more
inspiration after all.

Configuration

There is no graphical user interface for configuring Schedy. You’ll have
to express your configuration and schedules in a YAML file. However,
if you’ve ever written an automation or script in Home Assistant, this
is nothing you should be worried about.

This is a full configuration example with comments on each available
setting. Copy it to a .yaml file in your apps directory and adapt
it to your needs. The default values are provided as well. If you don’t
need a particular setting, omit it or leave it commented out.

schedy: # An arbitrary name for this instance of Schedy,
 # needed e.g. for addressing events to it.
 # Obligatory settings that tell appdaemon where to find the app.
 # You shouldn't need to change these two.
 module: hass_apps_loader
 class: SchedyApp

 # Enable debugging output
 #debug: false

 # By default, Schedy tries to restore its previous state at startup
 # from the records stored in Home Assistant. This includes scheduled
 # values, manual adjustments and re-scheduling times - just everything.
 # When this behaviour is not desired, change this setting to true
 # and Schedy will just apply the schedules at startup, no matter what
 # the previous actor states were.
 #reset_at_startup: false

 # If you enable this option, potentially harmful expressions received
 # in schedy_set_value events are evaluated.
 #expressions_from_events: false

 # This Python script is executed when a schedule rule expression needs to be
 # evaluated. All modules you import and variables you set here will be available when
 # your expression is evaluated. You can even declare classes and functions. The
 # result types and expression helpers can be used in this script as well.
 # Note: Don't expect this script to be executed as often as the number of rules
 # you have in your schedules. The expression evaluation environment is built the
 # first time a rule needs to be evaluated and then reused for all subsequent
 # rules during that schedule evaluation turn.
 #expression_environment: |
 # import math
 # import time as _time
 # something = "value"

 # Chose the type of actors that should be controlled by this instance
 # of Schedy.
 # Possible types can be found in the documentation.
 #actor_type: <required>

 # In the following config block, you may define templates with
 # settings that affect multiple actors in your setup. These can then be
 # used as a starting point for the configuration of individual actors.
 # Nested inclusion of templates is possible as well.
 actor_templates:

 # By default, an actor inherits its settings from the "default" template.
 default:

 # Optionally have this template based on another one.
 #template: other_template

 # Actor type-specific settings can be found in the documentation.
 #foo: bar
 #...

 # More templates ...
 #other_template:
 # ...

 # Add schedule rules you want to have prepended to each room's schedule
 # automatically here.
 schedule_prepend:

 # Add schedule rules you want to have appended to each room's schedule
 # automatically here.
 schedule_append:

 # Optionally, configure schedule snippets (lists of rules) that can
 # be included by expressions dynamically. See the documentation for
 # an example on how to use them.
 schedule_snippets:

 #summer:
 #- ...

 # When you use expressions in your schedules that query the state of
 # entities, you should tell Schedy which entities the schedules depend
 # on. It can then watch for state changes of these and re-evaluate
 # schedules automatically.
 # Note: Entities listed here trigger a re-evaluation in all rooms. For
 # entities only used in the schedules of particular rooms, use the
 # per-room watched_entities list.
 watched_entities:

 # Each entry has to be a string consisting of up to three
 # colon-separated parts:
 #
 # 1. The id of the entity to watch. This is mandatory.
 # 2. Which attributes to watch for changes of, either a single
 # attribute or a comma-separated list.
 # The special value "all" listens for changes of any attribute. Try
 # to avoid this whenever possible as it can increase the load
 # significantly.
 # Default: "state"
 # 3. The re-evaluation mode as known from the schedy_reevaluate event.
 # The special mode "ignore" causes no re-evaluation, it just
 # suppresses the warnings generated when the entity is queried from
 # an expression.
 # Default: "reevaluate"
 #
 # Examples:
 # - "binary_sensor.motion"
 # - "binary_sensor.motion:all"
 # - "binary_sensor.motion::reset"
 # - "binary_sensor.motion:state,other_attribute:reset"
 # - "binary_sensor.motion:all:ignore"

 # Configure your rooms here.
 rooms:

 # Create such a block for every room you want to control.
 #living:

 # An alternative friendly name to display in logs.
 #friendly_name: ...

 # When you disable this setting, Schedy won't allow actors to
 # change their value to something different from the scheduled
 # one or the one set by a schedy_set_value event. Actors
 # that change their value are then set back to the wanted one
 # immediately.
 #allow_manual_changes: true

 # This setting controls whether changes reported by one actor
 # should automatically be replicated to the other ones in this
 # particular room.
 #replicate_changes: true

 # Set this value to a number of minutes and Schedy will
 # automatically again apply the schedule after a manual change has
 # been made. If you, for instance, use the thermostat actor type,
 # change the target temperature at one of your thermostats and
 # this value is set to 120, Schedy will again apply the schedule
 # two hours after you made the change.
 # 0 means not re-schedule before the next scheduled value change
 # occurs.
 #rescheduling_delay: 0

 # All actors of this room go here.
 #actors:

 # This could be a thermostat.
 # NOTE: Don't forget the colon after the entity id.
 #climate.living1:

 # Choose the template this actor should inherit its settings
 # from.
 # By default, an actor inherits its settings from the "default"
 # template, given that you defined it.
 #template: default

 # We could, for instance, overwrite the delta defined in the
 # template for this particular thermostat only.
 #delta: 0.0

 # The room's schedule, consisting of multiple rules.
 schedule:
 #- ...

 # The same as the global watched_entities above, but these only
 # trigger a re-evaluation for this particular room.
 watched_entities:
 #- ...

 # Configure statistical parameters to be collected.
 statistics:

 # Pick an arbitrary name for the parameter instance.
 #some_name:
 # The type of parameter as found in the actor'S documentation.
 #type: <required>
 # More parameter-specific settings ...

 # More parameter instances ...

Actors

Schedy supports controlling different types of actors such as thermostats
or switches.

You first need to specify the desired actor type at the top level of
Schedy’s configuration:

actor_type: <name of actor type>

Then go on and add actors to your rooms. The available configuration
parameters and supported values for scheduling are explained on the
actor-specific pages.

Note

You have to decide for one actor type per instance of Schedy you
run. If you need to control different types of actors, create an
instance of Schedy for each, like so.

schedy_lights:
 module: hass_apps_loader
 class: SchedyApp
 actor_type: switch
 # ...

schedy_heating:
 module: hass_apps_loader
 class: SchedyApp
 actor_type: thermostat
 # ...

Of course, the same room names may then be used in each of these app
instances, since they run completely independent of each other.

Currently, the following actor types are available:

	Custom Actor

	Generic Actor

	Generic Actor Version 2

	Switch

	Thermostat

Common Settings

There are some settings common among all available actor types.

An alternative friendly name to display in logs.
#friendly_name: ...

This setting tells Schedy how often it should try sending a
value to the actor. If the actor reports the set value back, no
further retry is made. You may find this useful if the connection
between Home Assistant and your actor is unreliable. Set to 0 in
order to disable retrying entirely.
#send_retries: 10
How many seconds to wait before retrying.
#send_retry_interval: 30

Custom Actor

Warning

This feature is experimental. When you’re using it, feedback is
very welcome.

Note

This is a topic targeted at advanced users. It might be hard to
understand for newcomers.

The custom actor can be used if maximum control and flexibility is
required, as it allows you to write custom hooks (pieces of Python code)
that link schedule results to entity states. In fact, you could even
implement advanced types like Thermostat with this one.

While this actor is probably not for daily use, it gives you the power
you need when implementing something really fancy.

Note

When you’re extensively using the custom actor type for something
that could be interesting to other people as well, please consider
filing your idea as an issue on GitHub to maybe get it included in
Schedy natively. Thank you!

Understanding the Custom Actor

The purpose of every actor type is to provide a mapping between values
generated by a schedule and states of entities. These two terms, value
and state, are crucial for understanding how the custom actor works.

A value returned by a schedule may in fact be any Python object, be it
a string, number, boolean or even a custom type. The work to be done by
an implementation of the custom actor type is then to execute the Home
Assistant services needed to reach the state you want a particular value
to stand for. This work has to be acomplished in the so-called send
hook, which is just normal Python code in which you can, for example,
call services.

Note

You need to realize that values and states are two different things
your custom actor implementation needs to link to each other..

However, the same work has to be done in the other direction as well. It
needs to be possible to map a given entity state to the value that, when
returned from a schedule, would cause that state to be achieved. This
is handled by the state hook. It gets all state attributes of the
watched entity and must return the value this state is caused by.

These two hooks, the send and the state hook, are
executed similarly to the expressions used in schedules. Both simple expressions
(single-line) and whole statements (multi-line) are possible. When using
whole statements, the result has to be stored in the global result
variable as usual.

Inside the hooks, the following variables are available for you to
work with:

	state or value: The input depending on the type of hook.

	entity_id: The actor’s entity id.

	config: The custom configuration dictionary as defined in the
actor configuration.

	app: The appdaemon.plugins.hass.hassapi.Hass object to be used
for calling services etc.

	actor: The CustomActor object. The only purpose I could imagine
for using this object directly is for generating custom log messages,
e.g. for debugging purposes. You could do:

actor.log("I'm going to send the value {}."
 .format(repr(value)),
 level="DEBUG")

Configuration

These are all settings that can be configured for an actor, either on a per-actor
basis or for multiple actors at once in a template under actor_templates:. The
default values are shown here. If you are happy with the defaults for particular
settings, simply omit these settings or leave them commented out.

This hook should perform all actions required for moving the actor
to the state corresponding to the value given as "value". The result
of the hook isn't respected. You'll probably use this for calling
some services.
#send_hook: <required>

This hook is executed when a state update is received from the
watched entity. It has the dictionary with all received state attributes
available in the variable "state". The result has to be the scheduling
value corresponding to this state. If the result is None, the state
change is ignored.
When you don't define a state hook, the actor doesn't react to state
changes at all. Inferring values from states is then impossible, which
also disables change replication between actors in a room. Should you
really decide to not map states back to values, make sure you set the
"send_retries" setting to a low value, because the actor won't be able
to notice when it has reached the desired state and always send until
the configured number of retries is exceeded.
#state_hook: ...

This hook is optional and may be used to preprocess a value generated
by scheduling before it is stored and passed on to the send hook. The
value is available under the name "value". The result of this hook
has to be the updated value or None, in which case the value change
is discarded and no send hook is executed.
#filter_value_hook: ...

The config parameter is a dictionary which is available in all hooks
under the name "config". It can be filled with anything you like and
hence is useful for reusing a custom actor template, each time with
different settings. You may want to store things like attribute names
to be used by your custom hooks in the config dictionary.
It's empty by default.
config:

Generic Actor

Warning

This actor type has been superseeded by the Generic Actor Version 2. Use that instead.

The generic actor can be used for controlling different types of
entities like numbers or media players, even those having multiple
adjustable attributes such as roller shutters with tilt and position.

It works by defining a set of values and, for each of these values,
what service has to be called in order to reach the state represented
by that value. Together with a wildcard for undefined values, this is
a quite powerful mechanism.

Instead of a single value such as "on" or "off", you may also
generate a tuple with multiple values like (50, 75) or ("on", 10)
in your schedule rules, where each slot in that tuple corresponds to a
different attribute of the entity.

Configuration

These are all settings that can be configured for an actor, either on a per-actor
basis or for multiple actors at once in a template under actor_templates:. The
default values are shown here. If you are happy with the defaults for particular
settings, simply omit these settings or leave them commented out.

List the entity attributes to be controlled by this actor.
attributes:

- # The attribute of the entity to be watched for state changes.
 # Use "state" for the entity state or any other attribute from the
 # attributes dictionary.
 # When you set this to null, you define a write-only attribute which's
 # current value isn't reflected in the entity's state and thus can't be
 # determined by Schedy. The configured service is called when setting a
 # value, but the value can never be considered committed and re-sending
 # is done according to the send_retries and send_retry_interval settings.
 #attribute: null

 # Here, the possible values of that attribute are configured.
 # Values can be floats, integers, strings or null.
 values:

 #some_value:

 # The service that needs to be called in order to make the attribute
 # show this value.
 #service: <required>

 # The data to be passed to the service.
 #service_data: {}

 # Whether to include the entity id as "entity_id" in the service data.
 #include_entity_id: true

 # The parameter as which the actual value should be passed in the
 # service data.
 # null means not include the value in the service data.
 #value_parameter: null

 #other_value:
 # ...

 # The keyword "_other_" stands for a so-called wildcard value that
 # matches any value not explicitly defined here. You may want to use
 # the wildcard value to catch arbitrary numbers, for example.
 # If you define all possible values explicitly and don't need a wildcard,
 # simply leave it out.
 #_other_:
 # ...

- # Second attribute...

By default, services for changing the different attributes are called
in the order you defined the attributes. Set this flag to true to have
the order in which services are called reversed.
#call_reversed: false

For some types of actors that need multiple attributes to be
controlled, there are sometimes attributes that aren't important in
a particular state. For instance, a light that's turned off doesn't
care about the brightness or color set.
For these kind of actors, you can configure short values: values which
only need to have the first N attributes set.
You of course need to configure the attributes in an order that makes
sense, with mandatory ones first and state-specific ones later.
short_values:
When the first attribute is set to "off", don't consider further
attributes.
- ["off"]
When the first attribute is set to "on" and the second's value is
something catched by the wildcard value, ignore further attributes.
- ["on", "_other_"]

Supported Values

The generic actor can be used in two ways. When just a single attribute
should be controlled, every value for which a service has been configured
in the values section of the actor configuration may be returned
by a schedule. If you have the wildcard value _other_ configured,
any value is accepted.

Examples:

- v: "on"
- x: "-40 if is_on(...) else Next()"

As soon as you add multiple attributes to control, a list or tuple with
a value for each attribute is expected. The order is the same in which
the attributes were specified in the configuration.

Examples:

- v: ['on', 20]
- x: "(-40, 'something') if is_on(...) else Next()"

Note

When specifying the values on and off, enclose them in quotes
as shown above to inform the YAML parser you don’t mean the booleans
True and False instead.

Generic Actor Version 2

The generic2 actor can be used for controlling different types of entities like
numbers or media players, even those having multiple adjustable attributes such as
roller shutters with tilt and position.

It works by defining a set of values and, for each of these values, what services
have to be called in order to reach the state represented by that value.

Instead of a single value such as "on" or "off", you may also generate a
tuple of multiple values like (50, 75) or ("on", 10) in your schedule rules,
where each slot in that tuple corresponds to a different attribute of the entity.

If you want to see how this actor type can be used, have a look at the
Switch.

Configuration

These are all settings that can be configured for an actor, either on a per-actor
basis or for multiple actors at once in a template under actor_templates:. The
default values are shown here. If you are happy with the defaults for particular
settings, simply omit these settings or leave them commented out.

Here you configure the attributes of the entity to be controlled by the schedule.
attributes:
 # The attribute to be controlled, this could be e.g. "state" or "brightness".
 # A value of null creates a write-only attribute. This has to be used when you want
 # to control a property whose current value is not reflected in any of the entity's
 # attributes. Don't do this if not really necessary, since doing so means that
 # Schedy won't be able to verify that the value has been transmitted correctly. If
 # you must use a write-only attribute, you might also want to set send_retries to a
 # low value in order to avoid excessive network load.
- attribute: first
- attribute: second
- ...

Here you configure the values you want to be able to return from your schedule.
values:
 # Each value is a list of the values for the individual attributes configured above.
 # Schedy compares the entity's current attributes against the values defined here
 # in order to find the value currently active.
 # The special attribute value "*" is a wildcard and will, when used, match any
 # value of that particular attribute.
 # Additionally, you don't have to include all attributes in every single value,
 # only the first N attributes which values are provided for are compared against
 # the entity's state for the value to match.
- value: ["on", "*"]
 # The services that have to be called in order to make the actor report this value.
 calls:
 # Which service to call
 - service: ...
 # Optionally, provide a mapping with data to be passed with the service call.
 # You can use "{attr1}" as a placeholder for the value set for the first attribute,
 # "{attr2}" for the value of the second attribute and so on to pass the correct
 # attribute values to the service call as needed in order to bring the entity
 # to the state represented by the value you returned from your schedule.
 # The placeholder "{entity_id}" can be used to insert the actor's entity id.
 # For instance, if the value
 # ["on", 75]
 # was returned by a schedule, the following sample would render to:
 # {"param1": "something", "param2": 75}
 data:
 param1: "something"
 param2: "{attr2}"
 # Set to false if you don't want the entity_id field to be included in service
 # data automatically.
 #include_entity_id: true

More values#
- ...

Set this to true if you want Schedy to treat string attributes of an entity the
same, no matter if they're reported in lower or upper case. This is handy for some
MQTT devices, for instance, which sometimes report a state of "ON", while others say
"on".
#ignore_case: false

Supported Values

Every value that has been configured in the values section of the actor
configuration may be returned from a schedule.

Examples:

- v: "on"
- x: "-40 if is_on(...) else Next()"

As soon as you configure multiple slots (attributes to be controlled), a list or
tuple with a value for each attribute is expected. The order is the same in which
the slots were specified in the configuration.

Examples:

- v: ['on', 20]
- x: "(-40, 'something') if is_on(...) else Next()"

Note

When specifying the values on and off, enclose them in quotes
as shown above to inform the YAML parser you don’t mean the booleans
True and False instead.

Switch

The switch actor is used to control binary on/off switches. Internally, it’s a
Generic Actor Version 2, but with a much simpler configuration, namely none at all.

Note

It calls the generic homeassistant.turn_on and
homeassistant.turn_off services and hence can as well be used
for other entity types supporting to be turned on and off this
way. However, they need to provide "on" and "off" as their
state.

Especially, this is true for input_boolean and light entities.

For completeness, this is the configuration you had to use if you wanted to build
this switch actor out of the Generic Actor Version 2 yourself:

actor_type: generic2
actor_templates:
 default:
 attributes:
 - attribute: state
 values:
 - value: ["on"]
 calls:
 - service: homeassistant.turn_on
 - value: ["off"]
 calls:
 - service: homeassistant.turn_off
 ignore_case: true

Supported Values

You need to return the strings "on" or "off" from your schedules
for the switch actor to work. It’s that simple.

Thermostat

The thermostat actor is used to control the temperature of climate
entities.

Often, people ask me whether Schedy can be used with their particular
heating setup. I always tend to repeat myself in these situations,
hence I want to explain here what the exact preconditions for using
Schedy for heating control actually are.

	You need at least one thermostat in each room you want to control.
Such a thermostat must be recognized as a climate entity in Home
Assistant, and setting the target temperature from the Home Assistant
web interface should work reliably. Wall thermostats can be controlled
the same way as radiator thermostats, as long as they fulfill these
conditions as well. If you only have a switchable heater and an
external temperature sensor, have a look at Home Assistant’s Generic
Thermostat platform [https://home-assistant.io/components/climate.generic_thermostat/] to build a virtual thermostat first.

	If your thermostat is used for both heating and cooling, there has
to be an automatic HVAC mode which does heating/cooling based
on the difference between current and set target temperature. Schedy
will only switch the HVAC mode between on and off (exact names
can be configured) and set the target temperature according to the
room’s schedule.

If you are happy with these points and your setup fulfills them, there
should be nothing stopping you from integrating Schedy’s great scheduling
capabilities with your home’s heating. You can then go on and create a
Schedy configuration with thermostat actors.

Configuration

These are all settings that can be configured for an actor, either on a per-actor
basis or for multiple actors at once in a template under actor_templates:. The
default values are shown here. If you are happy with the defaults for particular
settings, simply omit these settings or leave them commented out.

Delta that is added to the temperature value sent to this
thermostat in order to correct potential inaccuracies of
the temperature sensor.
#delta: 0

The minimum/maximum temperature the thermostat supports.
If configured, temperatures outside the supported range are changed
to the minimum/maximum value before they're sent to the thermostat.
null means there is no limitation.
#min_temp: null
#max_temp: null

When this is set to something different than "OFF", Schedy will
rewrite the value OFF into this temperature before sending it to
the thermostat. You can set it to 4.0 degrees (if your thermostat
supports this low value) in order to prevent frost-induced damage
to your heating setup.
This setting is required when you want to send OFF to thermostats with
disabled HVAC mode support.
#off_temp: "OFF"

Set this to false if your thermostat doesn't support HVAC modes.
Please note that you won't be able to turn it off completely without
HVAC mode support. Remember to also configure off_temp when you
disable this feature.
#supports_hvac_modes: true

These two settings can be used to tweak the names of the HVAC modes.
#hvac_mode_on: heat
#hvac_mode_off: "off"

Supported Values

Your schedules must generate valid temperature values. Those can be
integers (20) or floats (21.5). Strings are tried to be converted
to numbers automatically for you.

A special value is OFF, which is an object available in the evaluation
environment when using the thermostat actor type. If this object is
returned from an expression, it will turn the thermostats off. The
equivalent for the OFF object to use when using plain values instead
of expressions is the string "OFF" (case-insensitive).

Note

When working with the Add() postprocessor and the result is
OFF, it will stay OFF, no matter what’s being added to it.

Statistical Parameters

The following statistical parameters are available when using this actor
type. In order to learn how to configure a statistical parameter, see
the chapter about Statistics.

temp_delta

This parameter measures the difference between target and current
temperature for all thermostats in the associated rooms. It can be used
to control a source of heating energy, such as a fuel oven, with Home
Assistant automations.

Options provided because this is a TempDeltaParameter:

	off_value: Specify how to handle thermostats which are turned
off. Specify either the number to assume as the delta or null, which
causes the thermostat to be excluded from statistics collection. The
default value is 0.

Options provided because this is a RoomBasedParameter:

	rooms: A list of rooms this parameter should consider. When you
leave the list empty, all rooms are considered.

Note

When you see something like some_id or other_id in the
following examples, these are meant to be replaced by entity ids of
individual actors.

The parameter calculates the minimum, average and maximum of all collected
values and adds them as min, avg and max attributes to the
parameter entity.

Reacting to changes of the attributes can easily be done with the
numeric_state trigger, together with a value_template like {{
state.attributes.max }} in Home Assistant.

Options provided because this is a MinAvgMaxParameter:

	factors: Specify a factor which an individual value should be
multiplied with before adding it to the list of values. Note that this
doesn’t change the weighting of a value for calculating the average,
it instead changes the value itself. The default factor is 1.

factors:
 some_id: 1.5
 other_id: 2

	weights: Specify how individual values should be weighted when
calculating the average value. The default weight is 1 and a weight
of 0 causes the value to be excluded completely.
You may want to use this feature to indicate that some values are
more or less important than others and have this fact reflected in
the statistics.

weights:
 some_id: 0.5
 other_id: 0

Schedules

A schedule controls the state of actors in a room. In its simplest form,
this means specifying which state should be set at which times statically,
like in a timetable.

However, this is not flexible enough for more sophisticated needs, which
is why schedules can be extended with dynamic rules, turning them into
Python scripts that can, for instance, access the state of Home Assistant
entities easily.

To get started, begin with static schedules. Once you feel comfortable
writing them, you may proceed to dynamic expressions.

The Basics for Writing Schedules

	The Basics: Static Schedules
	Scheduling Based on Time of the Day

	Constraints

	Rules Spanning Multiple Days

	Rules with Sub-Schedules

Turning Schedules into Powerful Scripts

	Dynamic Expressions
	Writing Expressions

	Examples

	Expression Helpers

	Postprocessing Results

	Result Markers

	Security Considerations

The Basics: Static Schedules

A schedule controls the state of actors in a room over time. It consists
of a set of rules. What these rules define is dependent upon the type
of actor. Our examples here use the thermostat actor type and hence
define temperatures.

Each rule must at least define a value:

schedule:
- value: 16

This schedule would just always set the temperature to 16
degrees, nothing else. Of course, schedules wouldn’t make a lot
sense if they couldn’t do more than this.

For value, there is a shortcut v to make rules more
compact. We’ll use that from now on.

Scheduling Based on Time of the Day

Here is another one:

schedule:
- v: 21.5
 start: "7:00"
 end: "22:00"
 name: Fancy Rule
- v: 16

This schedule shares the 16 degrees rule with the previous one,
but additionally, it got a new rule at the top. The new first rule
overwrites the second and will set a temperature of 21.5 degrees,
but only from 7.00 am to 10.00 pm. This is because it’s placed before
the 16 degrees-rule and Schedy evaluates rules from top to bottom. From
10.00 pm to next day 7.00 am, the 16 degrees do still apply.

Note

This is how schedules work. The first matching rule wins and determines
the value to set. Consequently, you should design your schedules with
the most specific rules at the top and gradually generalize to wider
time frames towards the bottom. Finally, there should be a fallback
rule without time restrictions at all to ensure you have no time slot
left without a value defined for.

The name parameter we specified here is completely optional and
doesn’t influence how the rule is interpreted. A rule’s name is shown
in logs and may be useful for troubleshooting.

For more fine-grained control, you may also specify seconds in addition
to hour and minute. 22:00:30 means 10.00 pm + 30 seconds, for
instance. Spanning rules beyond midnight (start >= end) is
possible as well.

You can now write rules that specify the value over the day, but you
still can’t create different schedules for, for instance, the days of
the week. Let’s do this next.

Constraints

schedule:
- v: 22
 weekdays: 1-5
 start: "7:00"
 end: "22:00"

- v: 22
 weekdays: 6,7
 start: "7:45"

- v: 15

With your knowledge so far, this should be self-explanatory. The only new parameter is
weekdays, which is a so called constraint.

Constraints can be used to limit the days on which the rule should start to be
active. There are a number of these constraints, namely:

	years: limit the years (e.g. years: 2016-2018); only years from 1970 to
2099 are supported

	months: limit based on months of the year (e.g.
months: 1-3, 10-12 for Jan, Feb, Mar, Oct, Nov and Dec)

	days: limit based on days of the month (e.g.
days: 1-15, 22 for the first half of the month + the 22nd)

	weeks: limit based on the weeks of the year

	weekdays: limit based on the days of the week, from 1 (Monday)
to 7 (Sunday)

	start_date: A date of the form { year: 2018, month: 2, day: 3 }
before which the rule should not be considered. Any of the three fields
may be omitted, in which case the particular field is populated with
the current date at validation time.
If an invalid date such as { year: 2018, month: 2, day: 29 } is
provided, the next valid date (namely 2018-03-01 in this case) is
assumed.

	end_date: A date of the form { year: 2018, month: 2, day: 3 }
after which the rule should not be considered anymore. As with
start_date, any of the three fields may be omitted.
If an invalid date such as { year: 2018, month: 2, day: 29 } is
provided, the nearest prior valid date (namely 2018-02-28 in this
case) is assumed.

A date needs to fulfill all constraints you defined for a rule to be considered
active at that specific date.

The format used to specify values for the first five types of constraints is similar
to that of crontab files. We call it range specification, and only integers are
supported, no decimal values.

	x: the single number x

	x-y where x < y: range of numbers from x to y,
including x and y

	x-y/z where x < y: range of numbers from x to y,
including x and y, going in steps of z

	*: range of all numbers

	*/z: range of all numbers, going in steps of z

	a,b, where a and b are any of the previous: the numbers
represented by a and b joined together

	… and so on

	Any spaces are ignored.

If an exclamation mark (!) is prepended to the range specification, its values are
inverted. For instance, the constraint weekdays: "!4-5,7" expands to weekdays:
1,2,3,6 and months: "!3" is equivalent to months: 1-2,4-12.

Note

The ! sign has a special meaning in YAML, hence inverted specifications have
to be enclosed in quotes.

Rules Spanning Multiple Days

Now let’s come back to the 16-degrees rule we wrote above and figure
out why that actually counts as a fallback for the whole day. Here’s
the rule we have so far.

- v: 16

If you omit the start parameter, Schedy assumes that you mean midnight
(0:00) and fills that in for you. When end is not specified
(as has been done here), Schedy sets 0:00 for it as well. However,
a rule that ends the same moment it starts at wouldn’t make sense. We
expect it to count for the whole day instead.

In order to express what we actually want, we’d have to set end to "00:00+1d",
which tells Schedy that there is one midnight between the start and end times. For
convenience, Schedy automatically assumes one midnight between start and end when
you don’t specify a number of days explicitly and the start time is prior or equal
to the end time, as in our case.

Note

You don’t need to care about setting +?d yourself unless one of your rules
should span more than 24 hours, requiring +1d or greater.

Having written out what Schedy assumes automatically would result in
the following rule, which behaves exactly identical to what we begun with.

- { v: 16, start: "0:00", end: "0:00+1d" }

Note

The rule has been rewritten to take just a single line. This is no
special feature of Schedy, it’s rather normal YAML. But writing rules
this way is often more readable, especially if you need to create
multiple similar ones which, for instance, only differ in weekdays,
time or value.

Let’s get back to Constraints briefly. We know that
constraints limit the days on which a rule starts to be active. This explanation is
not correct in all cases, as you’ll see now.

There are some days, such as the last day of a month, which can’t be expressed
using constraints explicitly. To allow targeting such days anyway, the start
parameter of a rule accepts a day shifting suffix as well. Your constraints are
checked for some date, but the rule starts being active some days earlier or later,
relative to the matching date.

Even though you can’t specify the last day of a month, you can well specify the
1st. This rule is active on the last day of February from 6.00 pm to 10.00 pm,
no matter if in a leap year or not:

- { v: 22, start: "18:00-1d", end: "22:00", days: 1, months: 3 }

This one even runs until March 1st, 10.00 pm:

- { v: 22, start: "18:00-1d", end: "22:00+1d", days: 1, months: 3 }

As you noted, the day shift of start can be negative as well, but not that of
end, meaning your rules can’t span backwards in time. This design decision was
made in order to keep rules readable and the evaluation algorithm simple. It neither
has a technical reason nor does it reduce the expressiveness of rules.

Rules with Sub-Schedules

Imagine you need to turn on heating three times a day for one hour, but only on working
days from January to April. The obvious way of doing this is to define four rules:

schedule:
- { v: 23, start: "06:00", end: "07:00", months: "1-4", weekdays: "1-5" }
- { v: 20, start: "11:30", end: "12:30", months: "1-4", weekdays: "1-5" }
- { v: 20, start: "18:00", end: "19:00", months: "1-4", weekdays: "1-5" }
- { v: "OFF" }

But what if you want to extend the schedule to heat on Saturdays as well? You’d end
up changing this at three different places.

The more elegant way involves so-called sub-schedule rules. Look at this:

schedule:
- months: 1-4
 weekdays: 1-6
 rules:
 - { v: 23, start: "06:00", end: "07:00" }
 - { v: 20, start: "11:30", end: "12:30" }
 - { v: 20, start: "18:00", end: "19:00" }
- v: "OFF"

The first, outer rule containing the rules parameter isn’t considered for
evaluation itself. Instead, it’s child rules (those defined under rules:) are
considered, but with all constraints of the outer rule (months and weekdays
in this case) applied to them.

Note

The delegation of constraints works not only for one level of
sub-schedules. Sub-schedules can be nested as deep as desired and constraints
are cumulated correctly.

We can go even further and move the v: 20 one level up, so that it counts for
all child rules which don’t have their own v defined:

schedule:
- v: 20
 months: 1-4
 weekdays: 1-6
 rules:
 - { start: "06:00", end: "07:00", v: 23 }
 - { start: "11:30", end: "12:30" }
 - { start: "18:00", end: "19:00" }
- v: "OFF"

Note how the v for a rule is chosen. To find the value to use for a particular
rule, the rule is first considered itself. In case it has no own v defined, all
sub-schedule rules that led to this rule are then traversed and scanned for a v
until one is found. When looking at the indentation of the YAML, this lookup is done
from right to left, so that the innermost value is used. The exact same approach is
taken for start and end.

Note

Values for v, start and end declared at inner rules (more indented
in YAML) take precedence over those set at outer rules and render the outer
values ineffective.

I’ve to admit that this was a small and well arranged example, but the benefit becomes
clearer when you start to write longer schedules, maybe with separate sections for
the different seasons.

Note

A rule with sub-schedule attached (one that has a rules parameter) is never
evaluated itself. Only the innermost rules (those with no sub-schedule) count as
rules for determining the room’s value. This snippet, for instance, has no effect
at all:

- v: 20
 weekdays: 1-3
 rules:
 - months: 1-4,9-12
 rules:
 # Note there are NO rules in the innermost sub-schedule, hence no rule
 # is evaluated by Schedy, making all this completely ineffective.

With this knowledge, writing basic Schedy schedules should be straightforward.

The next chapter deals with expressions, which finally give you the power to do
whatever you can do with Python, right inside your schedules.

Dynamic Expressions

As an alternative to fixed values, Schedy accepts so called expressions
in schedule rules.

Expressions are a powerful way of expressing a value to be sent to
actors dynamically in relation to anything you can think of. This power
comes from the fact that expressions are just normal Python code which
is evaluated at runtime. All expressions are pre-compiled at startup to
make their later evaluation really performant.

Contents:

	Writing Expressions

	Examples

	Expression Helpers

	Postprocessing Results

	Result Markers

Security Considerations

It has to be noted that expressions are evaluated using Python’s
exec() function. In general, this is not suited for code
originating from a source you don’t trust completely, because such
code can potentially execute arbitrary commands on your system with
the same permissions and capabilities the AppDaemon process itself
has. That shouldn’t be a problem for expressions you write yourself
inside schedules.

This feature could however become problematic if an attacker somehow
is able to emit events on your Home Assistant’s event bus. To prevent
expressions from being accepted in the schedy_set_value event,
processing of such expressions is disabled by default and has to be
enabled explicitly by setting expressions_from_events: true in your
Schedy configuration.

Writing Expressions

Note

In contrast to plain values, which are denoted as value or v,
expressions have to be set as the expression (or x) parameter
of a schedule rule. And since expressions have to be strings, we
enclose them in quotation marks to prevent the YAML parser from
guessing, which may otherwise lead to obscure errors with certain
expressions.

Expressions must return a kind of value the used actor type
understands. Take the thermostat actor as an example. It needs a
temperature value which can either be an integer (19) or floating
point value (20.5). What type of value an individual actor
needs is explained in the chapter specific to the actor type.

Expressions vs. Statements

The string provided as the x parameter of a schedule rule is
treated as a simple Python expression. Each of the following is a valid
expression.

	5

	True

	'off'

	17 if is_on('binary_sensor.absent') else Next()

Writing expressions that way is short and great for things like binary
decisions. However, there might be situations in which you need to make
more complex weightings that would get confusing when written as a single
line expression. That’s why you may as well use whole statements.

As soon as the string given as an expression contains line-breaks,
it’s treated as a series of whole statements rather than an expression. In
YAML, a schedule rule with such a multi-line expression can be denoted
as follows.

- x: |
 a = 2
 b = 5
 result = a * b

The string is introduced by a |, and all following lines need to be
indented by a custom (but consistent) number of spaces.

You may in fact write arbitrary Python code in such a script, including
import statements and class or function definitions. The only requirement
is that at the end of the execution, the final result is stored in the
global result variable.

Note

The string really has to consist of more than one line to be treated
as a statement. The following example doesn’t contain line-breaks
and hence would be considered as an uncompilable expression.

- x: |
 result = 42

While this is a valid single-line expression and would compile just fine:

- x: |
 42

Controlling the Evaluation Flow

There are special types available for creating objects you can return
from an expression in order to influence the way your schedule is
processed.

	Abort(), which causes schedule lookup to be aborted immediately.
The value will not be changed in this case.

	Break(levels=1), which causes lookup of one (or multiple nested)
sub-schedule(s) to be aborted immediately. The evaluation will continue
after the sub-schedule(s).

	IncludeSchedule(schedule), which dynamically inserts a sub-schedule rule with
the given Schedule object after the current rule. Especially, Break() and
Inherit() in included schedules do behave as if the included schedule was a
regular sub-schedule.

	Inherit(), which causes the value or expression of the nearest
ancestor rule to be used as result for the current rule. See the next
section for a more detailed explanation.

	Next(), which causes the rule to be treated as if it didn’t exist
at all. If one exists, the next rule is evaluated in this case.

For all of these types, usage examples are provided.

Expressions and Sub-Schedules

In general, there is no difference between using plain values and advanced
expressions in both rules with a sub-schedule attached to them (so-called
sub-schedule rules) and the rules contained in these sub-schedules. But
with expressions, you gain a lot more flexibility.

As you know from Rules with Sub-Schedules,
rules of sub-schedules inherit their v parameter from the nearest
ancestor rule having it defined, should they miss an own one. Basically,
this is true for the x parameter as well.

With an expression as the x value of the rule inside a sub-schedule,
you get the flexibility to conditionally overwrite the ancestor rule’s
value or expression. Should an expression return Inherit(), the next
ancestor rule’s value or expression is used. When compared to static
values, returning Inherit() is the equivalent of omitting the v
parameter completely, but with the benefit of deciding dynamically about
whether to omit it or not.

The whole process can be described as follows. To find the result for
a particular rule inside a sub-schedule, the v/x parameters of
the rule and it’s ancestor rules are evaluated from inside to outside
(from right to left when looking at the indentation of the YAML syntax)
until one results in something different to Inherit().

Inherit() even works accross the boundaries of a schedule snippet, because Schedy
internally converts a rule which returned IncludeSchedule() into a sub-schedule
rule, with the included schedule attached to it.

Examples

Considering the State of Entities

Let’s say we use the thermostat actor type and have a switch
that should prepare our bathroom for taking a bath. It’s name is
switch.take_a_bath. We write the following schedule for the room
bathroom.

schedule:
- x: "22 if is_on('switch.take_a_bath') else Next()"
- v: 19

Last step is to tell Schedy to watch for changes of the state of
switch.take_a_bath, so that it can re-evaluate the schedule of the
bathroom when the switch is toggled. We add the following to the room’s configuration:

watched_entities:
- "switch.take_a_bath"

We’re done! Now, whenever we toggle the take_a_bath switch, the
schedule is re-evaluated and our first schedule rule executes. The
rule is evaluating our custom expression, checking the state of the
take_a_bath switch and, if it’s enabled, causes the temperature to
be set to 22 degrees. However, if the switch is off, the rule is ignored
completely due to the Next() we return in that case and the second
rule is processed, which always evaluates to 19 degrees.

What’s so nice about these ... if ... else ... expressions in Python
is that they’re almost always self-explanatory. We’ll use them extensively
in the following examples.

Use of Add() and Next()

This is something I once used in my own heating configuration at home:

schedule_prepend:
- x: "Add(-3) if is_on('input_boolean.absent') else Next()"
watched_entities:
- "input_boolean.absent"

What does this? Well, the first thing we see is that the rule is placed
inside the schedule_prepend section. That means, it is valid for
every room and always the first rule being evaluated.

I’ve defined an input_boolean called absent in Home
Assistant. Whenever I leave the house, this gets enabled. If I return,
it’s turned off again. In order for Schedy to notice the toggling, I
added it to the global watched_entities configuration.

Now let’s get back to the schedule rule. When it evaluates, it checks the
state of input_boolean.absent. If the switch is turned on, it
evaluates to Add(-3), otherwise to Next().

Add(-3) is a so-called postprocessor. Think
of it as a temporary value that is remembered and used later, after a
real result was found.

Now, my regular schedule starts being evaluated, which, of course,
is different for every room. Rules are evaluated just as normal. If
one returns a result, that is used as the temperature and evaluation
stops. But wait, there was the Add(-3), wasn’t it? Hence -3
is now added to the final result.

With this minimal configuration effort, I added an useful away-mode
which throttles all thermostats in the house as soon as I leave.

Think of a device tracker that is able to report the distance between
you and your home. Having such one set up, you could even implement
dynamic throttling that slowly decreases as you near with almost zero
configuration effort.

Conditional Sub-Schedules Using Break()

When in a sub-schedule, returning Break() from an expression will
skip the remaining rules of that sub-schedule and continue evaluation
after it. You can use it together with Next() to create a conditional
sub-schedule, for instance. Again, we assume to write a schedule for
the thermostat actor type.

schedule:
- v: 20
 rules:
 - x: "Next() if is_on('input_boolean.include_sub_schedule') else Break()"
 - { start: "07:00", end: "09:00" }
 - { start: "12:00", end: "22:00" }
 - v: 17
- v: "OFF"

watched_entities:
- "input_boolean.include_sub_schedule"

The rules 2-4 of the sub-schedule will only be respected when
input_boolean.include_sub_schedule is on. Otherwise, evaluation
continues with the last rule, setting the value to OFF.

Note

Since schedule_prepend, a room’s individual schedule and
schedule_append are just sub-schedules chained internally,
returning Break() from a top-level rule of one of these three
sections causes evaluation to be continued with the next section.

The actual definition of this result type is Break(levels=1),
which means that you may optionally pass a parameter called levels
to Break(). This parameter controls how many levels of nested
sub-schedules to break out of. The implicit default value 1 will
only abort the innermost sub-schedule (the one currently in). However,
you may want to directly abort its parent schedule as well by returning
Break(2). In the above example, this would actually break the room’s
schedule and hence continue evaluating the schedule_append section.

Here’s another example with multiple nested sub-schedules utilizing
Break(). It is used by an user of Schedy to turn his bathroom floor
heating on at specific times, but only when the outside temperature
is 5 degrees or lower. It additionally differenciates between away,
holiday and normal modes.

schedule:
- v: "on"
 rules:
 # don't turn on when it's > 5 degrees outside
 - x: "Break() if float(state('sensor.outside_temperature') or 0) > 5 else Next()"

 # don't turn on when in away mode
 - x: "Break() if is_on('input_boolean.away') else Next()"

 # on weekends and during holidays, turn on from 09:00 to 10:30
 - rules:
 - x: "Next() if is_on('input_boolean.holidays') else Break()"
 weekdays: "!6-7"
 - { start: "09:00", end: "10:30" }

 # on normal working days, turn on from 06:30 to 07:00
 - weekdays: 1-5
 rules:
 - { start: "06:30", end: "07:00"}

at all other times, turn off
- v: 'off'

watched_entities:
- "sensor.outside_temperature"
- "input_boolean.away"
- "input_boolean.holidays"

Including Schedules Dynamically with IncludeSchedule()

The IncludeSchedule() result type for expressions can be used to
insert a set of schedule rules right at the position of the current
rule. This comes handy when a set of rules needs to be chosen depending
on the state of entities or is reused in multiple rooms.

Note

If you just want to prevent yourself from repeating the same static
constraints over and over for multiple consecutive rules that are used
only once in your configuration, use the sub-schedule feature of the normal
rule syntax instead.

You can reference any schedule defined under schedule_snippets in
the configuration, hence we create one to play with for our heating setup:

schedule_snippets:
 vacation:
 - { v: 21, start: "08:30", end: "23:00" }
 - { v: 16 }

Now, we include the snippet into a room’s schedule:

schedule:
- x: "IncludeSchedule(schedule_snippets['vacation']) if is_on('input_boolean.vacation') else Next()"
when not in vacation mode, have the normal per-room schedule
- { v: 21, start: "07:00", end: "21:30", weekdays: 1-5 }
- { v: 21, start: "08:00", end: "23:00", weekdays: 6-7 }
- { v: 16 }

watched_entities:
- "input_boolean.vacation"

It turns out that you could have done the exact same without including
a snippet by adding the vacation rules directly to the room’s schedule,
but doing it this way makes the configuration more readable, easier
to maintain and avoids redundancy in case you want to include the
vacation snippet into other rooms as well.

Other use cases for IncludeSchedule are selecting different schedules
based on presence (maybe even long holidays vs. short absence) or
weather sensors.

Note

Splitting up schedules doesn’t bring any extra power to Schedy’s
scheduling capabilities, but it can make configurations much more
readable as they grow.

What to Use Abort() for

The Abort return type is most useful for disabling Schedy’s scheduling
mechanism depending on the state of entities. You might implement on/off
switches for disabling the schedules with it, like so:

schedule_prepend:
- name: global schedule on/off switch
 x: "Abort() if is_off('input_boolean.schedy') else Next()"
- name: per-room schedule on/off switch
 x: "Abort() if is_off('input_boolean.schedy_room_' + room_name) else Next()"

These should trigger a re-evaluation in every room.
watched_entities:
- "input_boolean.schedy"

And for these it is sufficient to re-evaluate the corresponding room only.
rooms:
 living:
 watched_entities:
 - "input_boolean.schedy_room_living"
 kitchen:
 watched_entities:
 - "input_boolean.schedy_room_kitchen"

As soon as Abort() is returned, schedule evaluation is aborted and
the value stays unchanged.

Using the Generic Postprocess() Postprocessor

The Postprocess() postprocessor lets you
alter the result of scheduling in arbitrary ways. It takes a callable
which is then called with the result as its argument and should return
the eventually altered result.

In this example, we use Postprocess() with lambda closures (in-line
functions that generate their return value with only a single expression)
to limit the scheduled value to the range from 16 to 22. This
could be useful for a temperature, for instance.

- x: "Postprocess(lambda result: max(16, result))"
- x: "Postprocess(lambda result: min(result, 22))"

You could of course have done this with a single postprocessor as well.

- x: "Postprocess(lambda result: max(16, min(result, 22)))"

Instead of lambda closures, normal functions may also be used. Here is
an identically behaving, quite verbose implementation.

- x: |
 def limit(r):
 if r < 16:
 return 16
 if r > 22:
 return 22
 return r

 result = Postprocess(limit)

Here’s another one which actually behaves like Add(-3).

- x: "Postprocess(lambda result: result - 3)"

Note

As you know, evaluation stops at the first rule generating a
result. Hence you need to ensure the rules returning postprocessors are
placed before the rules that generate the results to be postprocessed,
not after them.

Expression Helpers

For generating meaningful values with expressions, you usually need access
to the state of entities in Home Assistant and other data, such as the
current date and time. Several functions and variables are available for
usage in your expressions, these will be described in this chapter.

Note

Depending on the actor type you’re using, there may be additional
helpers available. See the documentation of the particular actor type.

Available helpers:

	Basic Helpers
	app

	room_name

	schedule_snippets

	is_empty

	round_to_step

	Date and Time
	datetime

	now

	date

	time

	State Helpers
	is_on

	is_off

	state

	filter_entities

	Schedule Helpers
	schedule.evaluate

	schedule.next_results

	Pattern Helpers
	pattern.linear

Basic Helpers

app

app: SchedyApp

There is an object available under the name app which represents
the appdaemon.plugins.hass.hassapi.Hass object of Schedy. You could,
for instance, retrieve values of input sliders via the normal AppDaemon
API.

room_name

room_name: str

A string representing the name of the room the expression is evaluated
for as set in Schedy’s configuration (not the friendly name).

schedule_snippets

schedule_snippets: Dict[str, Schedule]

A dictionary containing all configured schedule snippets, indexed by
their name for use with IncludeSchedule().

is_empty

is_empty(iterable: Iterable) -> bool

Returns whether the given iterable is empty.

next() is used for testing the iterable. For iterators, this has the
side effect of the first item being consumed, but it avoids generating
all values just for decision about emptiness.

round_to_step

round_to_step(value: Union[float, int], step: Union[float, int], decimal_places: int = None) -> Union[float, int]

Round the value to the nearest step and, optionally, the given number
of decimal places.

Examples:

round_to_step(34, 25) == 25
round_to_step(0.665, 0.2, 1) == 0.6

Date and Time

datetime

datetime: ModuleType

Python’s datetime module.

now

now: datetime.datetime

A datetime.datetime object containing the current date and time.

date

date: datetime.date

A shortcut for now.date().

time

time: datetime.time

A shortcut for now.time().

State Helpers

These helpers can be used to retrieve the state of entities from Home
Assistant.

is_on

is_on(entity_id: str) -> bool

Returns True if the state of the given entity is "on"
(case-insensitive), False otherwise.

is_off

is_off(entity_id: str) -> bool

Returns True if the state of the given entity is "off"
(case-insensitive), False otherwise.

Note

There is a difference between using is_off(...) and not
is_on(...). These helper functions only compare the state of the
specified entity to the values "off" and "on", respectively. If
you want to treat a non-existing entity (which’s state is returned as
None) as if it was "off", you have to use not is_on(...)
since is_off(...) would return False in this case.

state

state(entity_id: str = None, attribute: str = None) -> Any

A shortcut for app.get_state().

It generates a warning when an entity is queried for which no watch has
been configured via watched_entities. That’s why you should always
use this helper instead of calling app.get_state() directly.

filter_entities

filter_entities(entities: Union[str, List[str]] = None, **criteria: Any) -> Iterable[str]

From a given set of entities, this function yields only those with a
state and/or attributes matching all given criteria.

Entities may either be specified as a single string (full entity id or
domain), a list of such strings, or as None, which means all entities
found in Home Assistant.

Examples:

entities with a state of "on"
for entity in filter_entities(state="on"):
 ...

binary_sensor and input_boolean entities having a room attribute with the value "living"
for entity in filter_entities(["binary_sensor", "input_boolean"], room="living"):
 ...

Schedule Helpers

Note

This is a topic targeted at advanced users. It might be hard to
understand for newcomers.

These helpers can be used to evaluate schedule snippets from within an
expression. That could be useful to make decisions based on the result
a particular schedule snippet would provide when evaluated at a given
point in time, even in the future.

Warning

Prospective evaluation of schedule snippets can only provide reliable
results for such ones not including expressions that reference to
the state of entities, because there is no way for Schedy to foresee
state changes. Schedule snippets only having rules with plain values
instead of expressions are however always safe in this regard.

ScheduleEvaluationResult is a type defined as Tuple[Any, Set[str],
Rule]. The first item is the value generated by the schedule, the
second a set with markers applied to the result and the third is the
Rule object which generated the value. You’ll normally only want
the first item, the actual value.

schedule.evaluate

schedule.evaluate(schedule: Schedule, when: datetime.datetime = None) -> Optional[ScheduleEvaluationResult]

Evaluates the given schedule at the given point in time. If when
is not specified, the current date and time is assumed.
When no result could be generated (e.g. because a rule evaluated to
Abort() or all evaluated to Next()), None is returned instead
of a ScheduleEvaluationResult.

Example:

result = schedule.evaluate(
 schedule_snippets["snip"],
 when=now+datetime.timedelta(hours=1),
)
if result:
 value = result[0]
 # do something with the value

schedule.next_results

schedule.next_results(schedule: Schedule, start: datetime.datetime = None, end: datetime.datetime = None) -> Generator[Tuple[datetime.datetime, ScheduleEvaluationResult], None, None]

This function let’s you iterate over future results of a given schedule
snippet. Every Tuple[datetime.datetime, ScheduleEvaluationResult]
represents a point in time at which the result will change.
With the start and end parameters, you can limit the time range
to consider. The default is to start at the current time and continue
infinitely.
The first result generated is always that for the start time, the
last one that for the end time.

Example:

results = schedule.next_results(
 schedule_snippets["snip"],
 end=now+datetime.timedelta(hours=10),
)
for when, (value, markers, rule) in results:
 # do something with the value

Pattern Helpers

These helpers can be used to calculate values based on some pre-defined
patterns.

pattern.linear

pattern.linear(start_value: Union[float, int], end_value: Union[float, int], percentage: Union[float, int]) -> float

Calculate the value at a given percentage between start_value
and end_value. The borders can be crossed when percentage is
outside the range 0..100.

Postprocessing Results

Note

This is a topic targeted at advanced users. It might be hard to
understand for newcomers.

There are situations in which it would come handy to post-process the
later result of scheduling in a specific way without knowing what that
result will actually be. One such situation for the thermostat actor type
could be lowering the temperature by a certain number of degrees when
nobody is home. For such needs, there is a concept called postprocessors.

In the evaluation environment, there are a number of types which, when
returned, tell Schedy you want to generate a postprocessor that is going
to alter the later result. Namely, there are:

	Add(x) to add a value x to the result.

	Multiply(x) to multiply the result with x.

	Invert() to invert the result. This negates numbers, inverts boolean
values and swaps the strings "on" and "off" for each other.

	Postprocess(func), where func is a callable that takes the
result as its only argument and returns the post-processed result. This
can conveniently be used with lambda-closures .

When an expression results in such a postprocessor object, it is stored
until a subsequent rule returns some real result. Then, the stored
postprocessors are applied to that result one by one in the order they
were generated.

See the Examples page for usage examples.

Result Markers

Note

This is a topic targeted at advanced users. It might be hard to
understand for newcomers.

A result generated by an expression can optionally be marked with some
pre-defined markers that influence how the result is handled.

Instead of

- x: "21"

you write

- x: "Mark(21, Mark.OVERLAY)"

to mark the result 21 with the OVERLAY marker.

The actual syntax is Mark(result, marker1, ..., markerN),
so you can add multiple markers ad once. Markers can be applied to
postprocessors as well, but they will be used
for the final result. Custom postprocessors (e.g. those defined via
Postprocess()) may also add result markers themselves.

The following markers are available:

	OVERLAY: Overwrite manual value adjustments even when a configured
rescheduling_delay would normally have prevented it.
As soon as the schedule no longer evaluates to an OVERLAY-marked
result the previous value is restored, no matter if that was the
scheduled or a manually set one. Even a previous re-scheduling time
is restored.
An occasion for using this marker is
Open Door or Window Detection.

	OVERLAY_REVERT_ON_NO_RESULT: When applied in conjunction with the OVERLAY
marker, the overlay is cancelled as soon as a schedule evaluation produces no result
(e.g. because Abort() was used or all rules evaluated to Next()). When an
overlay is created without this additional marker, the value marked with OVERLAY
stays active until the schedule really results in another value.
DEPRECATED: This is the default behaviour of OVERLAY now.

Events

Schedy introduces two new events it listens for and which you can emit
from your custom Home Assistant automations or scripts in order to
control Schedy’s behaviour.

	schedy_reevaluate: Trigger a re-evaluation of schedules. Only
use this event if you can’t express the criteria that should trigger
a re-evaluation via the watched_entities configuration, e.g. when
you need re-evaluation.based on time intervals instead of state changes.
Parameters are:

	room: the name (or list of names) of the room(s) to re-evaluate
schedules for as defined in Schedy’s configuration (not the
friendly_name) (default: null, which means all rooms)

	mode: There are two different re-evaluation modes you can choose
from. (default: "reevaluate")

	"reevaluate": Re-evaluate the schedule and, if the result has
changed compared to the previous evaluation, apply the new value to
all actors in the room. If a re-scheduling timer is running,
nothing is done until that timer goes off.
This is the mode you normally want when notifying Schedy about
state changes of entities used in your schedule.
You can trigger a schedy_reevaluate event in this mode as
often as you like without worrying about loosing manual value
changes early.

	"reset": Re-evaluate the schedule and set the resulting value
to all actors in the room, no matter if it has changed or not.
This mode also discardss a re-scheduling eventually planned for
the future and instead performs one immediately.
Use this mode in order to discard any manual adjustment at one of
the actors, e.g. when presence state has changed or a master switch
was toggled and you want to ensure all actors are updated.
This is exactly what the built-in delayed re-scheduling does after
manual adjustments when enabled.

	schedy_set_value: Sets a given value for a room.
Parameters are:

	room: the name (or list of names) of the room(s) as defined in
Schedy’s configuration (not the friendly_name)

	value or v: a plain value as it could also have been generated
by a schedule, as a simple alternative to expression

	expression or x: an expression as it could also have been
generated by a schedule, as an alternative to value

	force_resend: whether to re-send the value to the actors even
if it hasn’t changed due to Schedy’s records (default: false)

	rescheduling_delay: a number of minutes after which Schedy should
automatically switch back to the schedule; 0 disables automatic
re-scheduling (default: the rescheduling_delay set in Schedy’s
configuration for the particular room)

Note

In order to pass an expression to the schedy_set_value event,
you need to set expressions_from_events: true in Schedy’s
configuration. Beware the implications on security this has, as
everybody with access to Home Assistant’s event bus can then execute
arbitrary Python code on your machine with the privileges of the user
AppDaemon runs as. Weigh for yourself on whether you really need this
feature.

All events have an optional app_name parameter that can be submitted
when you have multiple instances of Schedy running for different purposes
and you want to address exactly one of these instances. Its value has
to be the name of the app instance as configured in AppDaemon. If you
omit this parameter, all Schedy instances will react to the event. The
app name is the name you start the app’s configuration with:

schedy_heating: # "schedy_heating" would be the value to use for app_name.
 module: hass_apps_loader
 class: SchedyApp
 # ...

This is an example Home Assistant script that turns the heating in
the room named living to 25.0 degrees and switches back to the
regular schedule after one hour, given that you use the thermostat
actor type and yourr app instance is named schedy_heating, of course.

- alias: Hot for one hour
 sequence:
 - event: schedy_set_value
 event_data:
 app_name: schedy_heating
 room: living
 v: 25.0
 rescheduling_delay: 60

Statistics

Schedy provides a concept for collecting statistical data about its
operation at runtime.

The statistical parameters you can collect depend on the actor type
used. A switch actor, for instance, obviously doesn’t support
measuring temperature differences. What parameters are available can be
found in the individual actor documentations.

What’s common among all parameters is that they create a new entity
in Home Assistant, named schedy_stats.<app name>_<parameter instance
name>. The state of these entities is always the empty string ""
and thus irrelevant, but their attributes are of interest. The names
and meanings of attributes generated by a specific parameter type can
be found in its documentation. You may then use normal Home Assistant
automations to react to changes of the individual entity attributes.

A simple statistics configuration with a single instance of the
temp_delta parameter, which is provided by the thermostat actor
type, might look as follows:

statistics:
 # Pick an arbitrary name for the parameter instance.
 upstairs_temp_delta:
 # The type of parameter as found in the actor'S documentation.
 type: temp_delta
 # More parameter-specific settings:
 rooms:
 bathroom:
 kidsroom:
 #...

Given that the name of your Schedy app instance is heating, this
would create an entity named schedy_stats.heating_upstairs_temp_delta
with the attributes min, avg and max.

Tips & Tricks

The purpose of this chapter is to collect useful configuration
snippets and tips for using Schedy in various (maybe not so common)
usage scenarios.

	Schedule Rules with Dynamic Start and End Times

	Reacting to Changes of Schedy’s State

	Open Door or Window Detection

	Motion-Triggered Lights

Schedule Rules with Dynamic Start and End Times

The start and end time of a schedule rule are always static. They can’t
be computed by something like expressions at runtime. However, there is
a trick you can utilize in order to get start and end times which are
based on the state of entities in Home Assistant.

Let’s assume you’ve got two entities, input_number.start_hour and
input_number.end_hour. Then you could write a schedule rule without
the start and end fields set, resulting in it always being valid.
As the value for x, you configure an expression like the following.

'on' if time.hour >= float(state('input_number.start_hour')) and time.hour <= float(state('input_number.end_hour')) else Next()

What this does is quite simple. It sets the value to “on” if the
current hour is between the values configured by the two entities we
introduced. If it’s not, the rule is ignored and processing continues
at the next rule, as always.

There is still one thing missing in order to make this work
properly. Schedy needs to be notified about state changes of
the used entities by adding them to the watched_entities
configuration. How that’s done is described in this example.

You could now make the temperature configurable via an
input_number.day_temperature entity as well.

Now let’s put this all together into a valid schedule rule:

- x: "state('input_number.day_temperature') if time.hour >= float(state('input_number.start_hour')) and time.hour <= float(state('input_number.end_hour')) else Next()"

Reacting to Changes of Schedy’s State

Each room records its state to an entity in Home Assistant. This entity
is named schedy_room.<app name>_<room name>.

The state of such an entity is the value currently set for the
room. Since values can be changed manually, this is not necessarily the
one generated by the schedule. The actual scheduled value is stored as
the scheduled_value attribute of the entity.

You can use normal Home Assistant automations to react to changes of
these entities.

Open Door or Window Detection

When using Schedy for heating control and you’ve got window sensors, you
might want to have the thermostats in a room turned off when a window
is opened. We can achieve this with a single additional schedule rule
for an unlimited number of windows.

We assume that our window sensors for the living room are named
binary_sensor.living_window_1 and binary_sensor.living_window_2
and report "on" as their state when the particular window is opened.

To make this solution scale to multiple windows in multiple rooms without
creating additional rules, we add a new custom attribute to our window
sensors via the customize.yaml file that holds the name of the Schedy
room the sensor belongs to.

binary_sensor.living_window_1:
 window_room: living

binary_sensor.living_window_2:
 window_room: living

Now, a new rule which overlais the temperature with OFF when a window
in the current room is open is added. We place it at the top of the
schedule_prepend configuration section to have it applied to all
rooms as their first rule.

This code checks all binary_sensor entities found in Home Assistant
for a window_room attribute with the current room’s name as its
value and a state of "on". This way it finds all window sensors of
the current room that report to be open. The is_empty() function is
used with the filter_entities() generator to have searching aborted as
soon as one open window is found rather than always checking all entities.
Feel free to break this single-line expression into multiple statements
if you prefer clarity over conciseness.

- x: "Mark(OFF, Mark.OVERLAY) if not is_empty(filter_entities('binary_sensor', window_room=room_name, state='on')) else Next()"

Now, we add the window sensors to the watched_entities of the
living room.

watched_entities:
- "binary_sensor.living_window_1"
- "binary_sensor.living_window_2"

That’s it. Don’t forget to restart Home Assistant after editing
customize.yaml.

Motion-Triggered Lights

Scheduling lights is really easy with the switch actor type. Even
associating motion sensors isn’t too complicated with just a single
additional schedule rule. The procedure is identical to that used for
Open Door or Window Detection, except that the binary_sensor entities
now report motion instead of open windows and the value needs to be set to
"on" while motion is detected.

Let’s assume the following:

	You’ve got a room named entrance configured in Schedy with one
or more lights as actors.

	There’S a motion sensor binary_sensor.entrance_motion that switches
to on when motion is detected.

Ok, let’s get started.

	Add a custom motion_room: entrance attribute to the
binary_sensor.entrance_motion entity via customize.yaml
to tie the motion sensor to the Schedy room it belongs to.

	Now, a new rule which overlais the value with "on" while a
motion sensor of the current room reports motion is added. We place
it at the top of the schedule_prepend configuration section to
have it applied to all rooms as their first rule.

- x: "Mark('on', Mark.OVERLAY) if not is_empty(filter_entities('binary_sensor', motion_room=room_name, state='on')) else Next()"

	Add the motion sensor to the watched_entities of the entrance room.

watched_entities:
- "binary_sensor.entrance_motion"

Try it out. As long as at least one of the motion sensors in a room
reports motion, the lights in that room should stay on.

If you also had brightness sensors in each room, you could now insert
another rule before the one we just added to fix the value to "off"
when it’s not dark enough in the particular room.

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [http://keepachangelog.com/en/1.0.0/]
and this project adheres to Semantic Versioning [http://semver.org/spec/v2.0.0.html].

Unreleased

Fixed

Security

Added

	Added rounding support to temperatures for the thermostat actor type via Python’s
built-in round() function. (#51)

Changed

Deprecated

Removed

0.8.3 - 2020-03-19

Fixed

	Fixed placeholder insertion in generic2 actor service data. (#50)

0.8.2 - 2020-02-21

Fixed

	Hotfix for an issue causing infinite recursion at delayed actor initialization on
AppDaemon 4 (see home-assistant/appdaemon#773).

0.8.1 - 2020-02-05

Fixed

	Fixed possible TypeError when using the generic2 actor type. (#47)

	The generic2 actor type now correctly handles service names in the usual
<domain>.<name> format.

0.8.0 - 2020-02-03

Fixed

	Fixed indentation in sample configuration in docs.

Added

	Added new generic2 actor type which is more flexible than the old generic.

Changed

	The switch actor type is now driven by the new generic2 actor type. Functionality
and syntax stays all the same.

0.7.0 - 2019-12-04

Fixed

	An overlay will now be applied even when the scheduled value won’t change.

Changed

	Infinite retrying of value sending to an actor is no longer supported, meaning
send_retries: -1 is now a configuration error. Use a reasonably high value
instead if you really need excessive retrying.

	Simplified internal handling of IncludeSchedule(). If this causes problems with
existing configurations, please file an issue.

Removed

	The previous name Skip for the Next expression result type has been removed.

	The OVERLAY_REVERT_ON_NO_RESULT marker has been removed, it’s the default now.

0.6.0 - 2019-09-27

Fixed

	Fixed a regression due to which setting an actor’s send_retries: 0 led to infinite
re-sending if the actor didn’t respond as expected.

	Fixed a race condition between Mark.OVERLAY and re-scheduling timers. (#35)

Changed

	The Skip expression result type has been renamed to Next, which better describes
its purpose.

	The behaviour of the OVERLAY_REVERT_ON_NO_RESULT result marker now is the
default with OVERLAY. The marker will be removed.

Deprecated

	0.7: The previous name Skip for the Next expression result type will be removed.

	0.7: The OVERLAY_REVERT_ON_NO_RESULT marker will be removed, it’s the default now.

Removed

	The end_plus_days rule parameter has been removed in favor of the new day
shifts specified with start and end.

	The expression_modules setting has been removed in favor of the new
expression_environment.

0.5.0 - 2019-07-20

Fixed

	Fixed a bug in schedule.next_results() expression helper that caused some result
changes to be skipped.

	Simplified the algorithm that decides whether a rule is active or not at a given
point in time. It should now handle all rules spanning multiple days correctly.

Added

	Added expression_environment setting which allows providing arbitrary variables
for the expression evaluation environment.

Changed

	The start and end rule parameters now accept day shifts, deprecating the
former end_plus_days.

	Constraints of rules with a sub-schedule attached are now only validated for the
day at which a particular rule starts. Hence rules of such sub-schedules spanning
midnight will now run until they’re intended to end.

	Home Assistant 0.96 introduced breaking changes in the climate API. Operation
modes have been renamed into HVAC modes, which is why the thermostat actor settings
for operation modes now have new names. See the actor docs for details.

Deprecated

	0.6: The end_plus_days rule parameter will be removed in favor of the new day
shifts specified with start and end.

	0.6: The expression_modules setting will be removed in favor of the new
expression_environment.

Removed

	Some settings of the thermostat actor have been removed in one run with the
adaptations needed to support the new climate API of Home Assistant 0.96.

0.4.0 - 2019-02-24

Fixed

	Fixed name of value_parameter setting for generic actor in docs.

	Schedules were re-evaluated when the value of a not watched attribute
of a watched entity changes.

Added

	Added new result marker OVERLAY_REVERT_ON_NO_RESULT to cancel an
overlay when the schedule produces no result.

	Result markers can now be added by postprocessors as well.

	The generic actor has received new features (short values and sending
of attributes in reversed order). See the actor sample config for details.

Changed

	The wanted value of a room is not sent to actors at startup when
replicate_changes has been disabled in the room’s configuration.

Removed

	The old name schedy_reschedule for the schedy_reevaluate
event has been removed.

0.3.0 - 2019-01-05

Fixed

	It’s no longer possible to create cycles when including schedules. The
backwards resolution of rule values still works, it just treats
IncludeSchedule() results for schedules already on the stack as
if they were Inherit() and hence ignores them.

	The filter_entities() state helper returned no entities in certain
cases.

Added

	Schedy can now re-evaluate schedules automatically when the state of
entities changes. See the new watched_entities settings.

	Range specifications for constraints can now be inverted by prepending
them with !.

	Added the Inherit() result type to inherit the parent rule’s
value. None will continue to work as well, but Inherit()
is more explanatory and thus preferred.

	When an expression fails to evaluate, the traceback is now logged.

Changed

	Various small improvements of the examples for using expressions.

	The schedy_reschedule event has been renamed to
schedy_reevaluate. The old name will cease to work in version 0.4.

	The documentation for writing schedules has been restructured.

Deprecated

	0.4: The old name schedy_reschedule for the schedy_reevaluate
event will be removed.

Removed

	The old name Negate for the Invert postprocessor has been
removed.

	The And and Or postprocessors habe been removed. Use the generic
Postprocess instead.

0.2.0 - 2018-12-23

Merry Christmas to all users of hass-apps! Thank you for putting your
trust in Schedy.

Fixed

	All expressions of schedule rules specified in the YAML configuration
should be enclosed in quotes to force the parser to treat them as
strings. A note has been added to the documentation and all examples
were updated accordingly.

Added

	Added the Postprocess postprocessor that can be used to post-process
the scheduling result in a completely custom way.

Changed

	The rules configured as schedule_prepend, the individual room’s
schedule and those configured as schedule_append are now combined
into the final room’s schedule as three separate sub-schedules. This
implies that Break(), when returned from the top level, will
now only break the individual section of the schedule it stands
in. Break() in a schedule_prepend section will e.g. only cause
the remaining rules of the schedule_prepend section to be skipped
and continue with the individual room’s schedule. Use Abort()
(recommended) or Break(2) to achieve the old behaviour.

	The generic actor has been reworked to support controlling multiple
attributes at once. Its configuration schema has changed as well, so
please consult the documentation for migrating.

	Preliminary results are now called postprocessors. Syntax and names
stay unchanged.

	The Negate postprocessor has been renamed to Invert. The old
name will cease to work in version 0.3.

Deprecated

	0.3: The old name Negate for the Invert postprocessor will
be removed.

	0.3: The And and Or postprocessors will be removed. Use the
generic Postprocess instead.

0.1.1 - 2018-12-11

Changed

	Lowered delay after which a schedy_reschedule event is processed from
3 to 1 second.

0.1.0 - 2018-12-09

Added

	Initial release.

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [http://keepachangelog.com/en/1.0.0/].

Unreleased

Fixed

Security

Added

Changed

	Move project to maintenance mode (incl. disabling request for donations)

Deprecated

Removed

0.20200319.0

Changed

	Specified dependency versions based on semantic versioning.

	Schedy v0.8.3

0.20200221.0

Changed

	Schedy v0.8.2

0.20200205.0

Changed

	Schedy v0.8.1

0.20200203.0

Changed

	Schedy v0.8.0

0.20191210.0

Changed

	Simplified installation and upgrade instructions in docs

0.20191204.0

Changed

	Schedy v0.7.0

0.20190927.0

Changed

	Schedy v0.6.0

0.20190720.0

Changed

	Schedy v0.5.0

Removed

	Heaty

0.20190224.0

Changed

	Configuration errors are now logged in a more human-readable format.

	Schedy v0.4.0

0.20190105.0

Changed

	Schedy v0.3.0

0.20181223.1

Changed

	Some documentation changes

0.20181223.0

Changed

	Schedy v0.2.0

Removed

	Removed the motion_light app.

0.20181211.0

Changed

	Schedy v0.1.1

0.20181209.0

Added

	Schedy v0.1.0

Changed

	Installation in hass.io is now a lot simpler, see
here.

	Installation in Docker is now a lot simpler, see
here.

Deprecated

	The heaty app is now obsolete because of Schedy and won’t receive
new updates. Please migrate to Schedy. Heaty will however stay there
for the foreseeable future.

	The motion_light app will be removed at the end of 2018. Schedy can
control lights much more flexibly.

Removed

	Removed the Auto-Install Assistant because of missing resonance

0.20181005.0

Changed

	Re-generated sphinx configuration with version 1.7.8.

	Changed minimum version of observable dependency to 1.0.0.

	heaty v0.17.0

0.20180824.1

Fixed

	Fixed appdaemon dependency to version >= 3.0.0.

0.20180824.0

Changed

	heaty v0.16.0

Removed

	Removed AppDaemon 2.x support.

0.20180801.0 [https://github.com/efficiosoft/hass-apps/compare/v0.20180707.0...v0.20180801.0] - 2018-08-01

Added

	Added a script that automates the installation process and can be run
with just one single command. See
here for more
information.

Changed

	heaty v0.15.0

Deprecated

	AppDaemon 2.x support will be dropped in a late August 2018
release. Please switch to AppDaemon 3.x.

0.20180707.0 [https://github.com/efficiosoft/hass-apps/compare/v0.20180405.0...v0.20180707.0] - 2018-07-07

Changed

	heaty v0.14.0

	No longer using broken set_app_state() feature of AppDaemon, hence
AppDaemon 3.0.0+ should now work and blacklisting has been removed.

Deprecated

	AppDaemon 2.x support will be dropped in a late August 2018
release. Please switch to AppDaemon 3.x.

0.20180405.0 [https://github.com/efficiosoft/hass-apps/compare/v0.20180325.0...v0.20180405.0] - 2018-04-05

Changed

	heaty v0.13.0

0.20180325.0 [https://github.com/efficiosoft/hass-apps/compare/v0.20180310.1...v0.20180325.0] - 2018-03-25

Fixed

	Fixed wrong path to sample configuration files in docs/apps/index.rst.

Added

	Blacklisted AppDaemon version 3.0.0 in requirements. (#12)

Changed

	heaty v0.12.4

0.20180310.1 [https://github.com/efficiosoft/hass_apps/compare/v0.20180310.0...v0.20180310.1] - 2018-03-10

Changed

	Fixed old project name in setup.py left over by mistake.

0.20180310.0 [https://github.com/efficiosoft/hass_apps/compare/v0.20180307.0...v0.20180310.0] - 2018-03-10

Changed

	heaty v0.12.3

	Switched project name from hass_apps to hass-apps

0.20180307.0 [https://github.com/efficiosoft/hass_apps/compare/v0.20180305.0...v0.20180307.0] - 2018-03-07

Changed

	heaty v0.12.2

0.20180305.0 [https://github.com/efficiosoft/hass_apps/compare/v0.20180302.0...v0.20180305.0] - 2018-03-05

Changed

	heaty v0.12.1

0.20180302.0 [https://github.com/efficiosoft/hass_apps/compare/v0.20180221.0...v0.20180302.0] - 2018-03-02

Changed

	heaty v0.12.0

	Require voluptuous >= 0.11.1.

	It is now strongly recommended to install in a separate virtualenv to
avoid conflicts in versions of dependency packages that are needed by
both hass_apps and Home Assistant. The Getting started section has
been updated accordingly.

0.20180221.0 [https://github.com/efficiosoft/hass_apps/compare/v0.20180218.0...v0.20180221.0] - 2018-02-21

Changed

	motion_light v0.1.1

	Ported docs, sample configurations and changelogs to sphinx +
readthedocs.org.

0.20180218.0 [https://github.com/efficiosoft/hass_apps/compare/v0.20180209.0...v0.20180218.0] - 2018-02-18

Changed

	heaty v0.11.0

0.20180209.0 [https://github.com/efficiosoft/hass_apps/compare/v0.20180205.2...v0.20180209.0] - 2018-02-09

Changed

	heaty v0.10.2

0.20180205.2 [https://github.com/efficiosoft/hass_apps/compare/v0.20180205.1...v0.20180205.2] - 2018-02-05

Fixed

	Fixed wrong AppDaemon version in requirements.

0.20180205.1 [https://github.com/efficiosoft/hass_apps/compare/v0.20180205.0...v0.20180205.1] - 2018-02-05

Changed

	heaty v0.10.1

0.20180205.0 [https://github.com/efficiosoft/hass_apps/compare/v0.20180203.0...v0.20180205.0] - 2018-02-05

Fixed

	Added missing release dates to CHANGELOG.md

Added

	Added CHANGELOG.md and LICENSE to Python source package.

	Added appdaemon 3 support alongside the old appdaemon 2

Changed

	heaty v0.10.0

0.20180203.0 [https://github.com/efficiosoft/hass_apps/compare/v0.20180202.1...v0.20180203.0] - 2018-02-03

Changed

	heaty v0.9.4

0.20180202.1 [https://github.com/efficiosoft/hass_apps/compare/v0.20180202.0...v0.20180202.1] - 2018-02-02

Changed

	heaty v0.9.3

0.20180202.0 [https://github.com/efficiosoft/hass_apps/compare/v0.20180201.0...v0.20180202.0] - 2018-02-02

Changed

	heaty v0.9.2

0.20180201.0 - 2018-02-01

Added

	Begin using CHANGELOG.md

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at r.schindler@efficiosoft.com. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4, available at http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

Index

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/btn_donateCC_LG.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to the documentation of hass-apps!

